
Cloud Database Systems

Large Scale Data Engineering

Cloud Database Systems

www.cwi.nl/~boncz/badsCloud Data Systems

Credits
• David DeWitt & Willis Lang (Microsoft)

– cloud DW material
• Marcin Zukowski (Snowflake)
• Ippokratis Pandis (Amazon Redshift/Spectrum)
• Steven Bryen (Amazon Aurora)
• Spark Team

– Matei Zaharia, Xiangrui Meng (Stanford),
– Ion Stoica, Xifan Pu (UC Berkeley)
– Reynold Xin, Alex Behm (Databricks)

www.cwi.nl/~boncz/badsCloud Data Systems

Complexity
(deployment &

operational)

Cost (capex + opex)

Low

Medium

Low Medium High

High

Appliance

RYO

Buy an appliance
§ Teradata, Oraclle Exadata, Netezza
§ High capex, low opex
§ Low complexity
§ Gold standard for performance

Roll-your-own (RYO)
§ Buy & install a cluster of servers
§ Buy, install, & configure software (Vertica,

Asterdata, Greenplum, …)
§ High complexity
§ Medium capex and opex

Only 2 options 5 years ago!

10,000 ft. view: Complexity vs Cost

www.cwi.nl/~boncz/badsCloud Data Systems

Complexity
(deployment &

operational)

Cost (capex + opex)

Low

Medium

Low Medium High

High

Appliance

RYO

CLOUD DW

10,000 ft. view: Complexity vs Cost

Use a SAAS DW in the cloud
§ AWS Redshift, MSFT SQL DW, Snowflake, BigQuery
§ Low complexity
§ No capex, low opex

www.cwi.nl/~boncz/badsCloud Data Systems

Appliance

RYO

CLOUD DW

Time to make an
adjustment

Cost of making an adjustment

Minutes

Weeks

Low Mediu
m

High

Months

Scalability and the price of agility

www.cwi.nl/~boncz/badsCloud Data Systems

• No CapEx and low OpEx

• Quick deployment
• Low storage prices (Azure, AWS S3, GFS)
• Flexibility to scale up/down compute capacity
• Simple upgrade process

Why Cloud DW?

www.cwi.nl/~boncz/badsCloud Data Systems

On-Premise Parallel Analytical DBs
§Alternative architectures

– Shared-memory
– Shared-disk/storage
– Shared-nothing

§Partitioned tables

§Partitioned parallelism
“The Case for Shared Nothing,”
Stonebraker, HPTS ‘85

www.cwi.nl/~boncz/badsCloud Data Systems

• Commodity servers connected via commodity networking

• DB storage is ”strictly local” to each node

• Design scales extremely well

…

Node K

MEM

CPU

Node 2

MEM

CPU

Node 1

MEM

CPU

Interconnection Network

Shared-Nothing

Co-located
compute and

storage

www.cwi.nl/~boncz/badsCloud Data Systems

• Commodity servers connected to each other and storage
using commodity networking

• DB is stored on “remote storage” (e.g. a SAN, S3, Azure
Storage)

Storage Area Network

…

Node 1

MEM

CPU

Node 2

MEM

CPU

Node K

MEM

CPU

Shared Disk/Storage

Network can limit scaling as
it must carry I/O traffic

Local disks for caching DB
pages, temp files, …

www.cwi.nl/~boncz/badsCloud Data Systems

Shared StorageWhat?

Distribute rows of each table
across multiple storage devices
Why?
• spread I/O load
• parallel query execution

• data lifecycle management

How?
Hash, Round Robin, Range

Table Partitioning

www.cwi.nl/~boncz/badsCloud Data Systems

Execution
Coordinator

Optimizer

Parser

Catalogs

Application

NODE
1

Orders Table
hash partitioned

on CID

Customers
Table

hash partitioned
on ID

Select Name, Item from
Orders O, Customers C
where O.CID = C.ID

NODE
2

JOIN
O.CID = C.ID

JOIN
O.CID = C.ID

CID OID Item

602 10 Xbox

602 11 iPod

602 10 Tivo

752 31 iPhone

ID Name AmtDue

602 Larry $13K

322 Jeff $20K

752 Anne $75K

CID OID Item

633 21 TV

633 21 DVD

933 20 Surface

19 51 TV

ID Name AmtDue

933 Mary $49K

19 George $83K

633 Bob $19K

Join can be done “locally”

Example of
“partitioned parallelism”

No data movement

Shared-Nothing Ex.

www.cwi.nl/~boncz/badsCloud Data Systems

Execution
Coordinator

Optimizer

Parser

Catalogs

Application

NODE
1

Orders Table
hash partitioned

on OID

Customers
Table

hash partitioned
on ID

Select Name, Item from
Orders O, Customers C
where O.CID = C.ID

NODE
2

JOIN
O.CID = C.ID

JOIN
O.CID = C.ID

CID OID Item

602 10 Xbox

602 11 iPod

602 10 Tivo

752 31 iPhone

ID Name AmtDue

602 Larry $13K

322 Jeff $20K

752 Anne $75K

CID OID Item

633 21 TV

633 21 DVD

933 20 Surface

19 51 TV

ID Name AmtDue

933 Mary $49K

19 George $83K

633 Bob $19K

Join can be done “locally”

Example of
“partitioned parallelism”

No data movement

Shared-Nothing Ex.

Biggest table (orders)
needs to be shuffled: all-to-

all communications

data movement needed

Join cannot be done “locally”

www.cwi.nl/~boncz/badsCloud Data Systems

Execution
Coordinator

Optimizer

Parser

Application

Orders Table
hash partitioned

on CID

Customers
Table

hash partitioned
on ID

Select Name, Item from
Orders O, Customers C
where O.CID = C.ID

CID OID Item

602 10 Xbox

602 11 iPod

602 10 Tivo

752 31 iPhone

ID Name AmtDue

602 Larry $13K

322 Jeff $20K

752 Anne $75K

CID OID Item

633 21 TV

633 21 DVD

933 20 Surface

19 51 TV

ID Name AmtDue

933 Mary $49K

19 George $83K

633 Bob $19K

LAN

NODE
1

NODE
2

Both tables are remote

Shared-Storage Ex.

www.cwi.nl/~boncz/badsCloud Data Systems

For 30+ years

• Shared-nothing has been “gold standard”
– Teradata, Netezza, DB2/PE, SQLserver PDW, ParAccel, Greenplum

• Simplest design

• Excellent scalability
• Minimizes data movement

– Especially for DBs with a star schema design

• The “cloud” has changed the game
– shared nothing:

2017

www.cwi.nl/~boncz/badsCloud Data Systems

Outline

• Part 1: Intro
• Part 2: Analytic Databases in the Cloud

– Snowflake
– Amazon Redshift
– Google BigQuery
– Databricks

• Part 3: Transactional Databases in the Cloud
– Amazon RDS è Aurora

www.cwi.nl/~boncz/badsCloud Data Systems

Snowflake Elastic DW
• Shared-storage design (cloud storage = “shared storage”)

– Compute decoupled from storage, Highly elastic

• Columnar Compressed Store
– Native data format
– Stored internally by Snowflake

• Leverages AWS
– Tables stored in S3 but dynamically cached on local storage

Clusters of EC2 instances used to execute queries

• Rich data model
– Schema-less ingestion of JSON documents
– Regular parts automatically converted to column-store

www.cwi.nl/~boncz/badsCloud Data Systems

Snowflake Architecture

S3 DATA
STORAGE

COMPUTE
LAYER

VIRTUAL
WAREHOUSE

N1 N2 N3 N4 CLUSTER OF EC2 INSTANCES

DATA CACHE

VIRTUAL
WAREHOUSE

N1 N2

VIRTUAL
WAREHOUSE

N1 N2 N3 N4 N5 N6 N7 N8

CLOUD
SERVICES

AUTHENTICATION & ACCESS CONTROL

QUERY
OPTIMIZER

TRANSACTION
MANAGER

INFRASTRUCTURE
MANAGER SECURITY

METADATA
STORAGE

Database tables stored here

These disks are strictly
used as caches

www.cwi.nl/~boncz/badsCloud Data Systems

Table Storage

• Rows of each table are stored in multiple
S3 files:

• Each file is ~10MB

C
us

to
m

er
_F

ile
1

C
us

to
m

er
_F

ile
2

…

C
us

to
m

er
_F

ile
N

§ Inside a file, rows stored
in columnar fashion

ID
NAME

AMTDUE

FILE
HEADER

ID
VALUES

NAME
VALUES

AMT_DUE
VALUES

”Standard” compression (gzip,
RLE, …) schemes available

Min & max value of each column of each
file of each table are kept in catalog.

Used for pruning at run time.

Not able to support hash or RR
partitioning as files are created

strictly as rows are inserted into table

www.cwi.nl/~boncz/badsCloud Data Systems

Virtual Warehouses

Dynamically created cluster of EC2 instances

COMPUTE
LAYER

VIRTUAL
WAREHOUSE

N1 N2 N3 N4 CLUSTER OF EC2 INSTANCES

DATA CACHE

Three sizing mechanisms:
1) Number of EC2 instances
2) ”Size” of each instance (# cores, I/O

capacity)
3) Auto-scaling of one virtual warehouseLocal disks cache file headers &

table columns

www.cwi.nl/~boncz/badsCloud Data Systems

Separate Compute & Storage.

• Queries against the same DB can
be given the resources to meet
their needs – truly unique idea

• DBA can dynamically adjust
number & types of nodes

• This flexibility is simply not feasible
with a shared-nothing approach
such as RedShift.

Sales DB

VIRTUAL
WAREHOUSE

N1 N2

VIRTUAL
WAREHOUSE

N1 N2 N3 N4 N5 N6 N7 N8

S3

Q1 Q2

www.cwi.nl/~boncz/badsCloud Data Systems

Query Execution

• Each query runs on a single virtual warehouse

• Standard parallel query algorithms
• Modern SQL engine:

– Columnar storage, Vectorized executor

• Updates create new files!
– Artifact of S3 files not being updatable.
– But makes time travel possible (table “forking” and “cloning”)

• zero-copy: just share certain S3 files

www.cwi.nl/~boncz/badsCloud Data Systems

High Availability
Scale-out of all tiers:
metadata, compute, storage

Resiliency across multiple availability zones
• Geographic separation

• Separate power grids

• Built for synchronous replication

Fully online updates & patches (zero downtime)

Fully managed by Snowflake
Database

Storage

Virtual
Warehouses

Cloud
Services

Metadata

Services

Availability
Zone

Availability
Zone

Availability
Zone

www.cwi.nl/~boncz/badsCloud Data Systems

High Availability
Protection against infrastructure failures
All data transparently &
synchronously replicated 3+ ways
across multiple datacenters

Protection against corruption & user
errors
“Time travel” feature enables instant
roll-back to any point in time during
chosen retention window

Long-term data protection
Zero-copy clones + optional export
to S3 enable user-managed data
copies

New data Modified data

T
0

T
1

T
2

SELECT * FROM T0…

Daily

Weekly S3

www.cwi.nl/~boncz/badsCloud Data Systems

Secret Weapon: Data Sharing

2

Data
ConsumersData

Providers

Consumers
• Get access to the data without any

need to move or transform it.
• Query and combine shared data

with existing data or join together
data from multiple publishers

Providers
• Secure and integrated Snowflake’s

access control model
• Only pay normal storage costs for

shared data
• No limit to the number of

consumer accounts with which a
dataset may be shared

www.cwi.nl/~boncz/badsCloud Data Systems

Snowflake Summary

• Designed for the cloud from conception

• Can directly query unstructured data (json) w/o loading
• Compute and storage independently scalable

– Virtual warehouses composed of clusters of AWS EC2 instances
– VWs cache parts of table data. Tables are shared between VWs

• Data Sharing
– Available across AWS, Azure, Google Cloud
– Data economy/marketplace

• No management knobs: ease of use
– No indices, no create/update stats, no distribution keys, …

www.cwi.nl/~boncz/badsCloud Data Systems

Outline

• Part 1: Intro
• Part 2: Analytic Databases in the Cloud

– Snowflake
– Amazon Redshift
– Google BigQuery
– Databricks

• Part 3: Transactional Databases in the Cloud
– Amazon RDS è Aurora

www.cwi.nl/~boncz/badsCloud Data Systems

Amazon (AWS) Redshift
• Leader in market adoption (still?)

– Snowflake is biggest competitor now

• Classic shared-nothing design w. locally attached storage
– Engine is ParAccel database system (shared-nothing MPP, JIT C++)
– Native data format (compressed columnar)
– Leverages local storage, even co-partitioning of tables (local joins)
– Storage and compute do not scale independently

• But.. Redshift is becoming more elastic, cloud-centric

• Spectrum subsystem
– scalable/elastic access external data sources (e.g. Parquet on S3)
– allows to push data partial queries to external workers

www.cwi.nl/~boncz/badsCloud Data Systems

Redshift Spectrum

Spectrum

www.cwi.nl/~boncz/badsCloud Data Systems

Outline

• Part 1: Intro
• Part 2: Analytic Databases in the Cloud

– Snowflake
– Amazon Redshift
– Google BigQuery
– Databricks

• Part 3: Transactional Databases in the Cloud
– Amazon RDS è Aurora

www.cwi.nl/~boncz/badsCloud Data Systems

Google BigQuery
• Separate storage and compute
• Leverages Google’s internal storage & execution stacks:

– Collosus distributed file system
– DremelX query executor
– Jupiter networking stack
– Borg resource allocator

• No knobs, no indices, …
Serverless è you do not start any machines, Google just runs your queries

AWS Athena is similar è Serverless Presto in Cloud

www.cwi.nl/~boncz/badsCloud Data Systems

BigQuery Tables
• Stored in Collosus FS

– Partitioned by day (optionally)

• Columnar storage (Capacitor)
– RLE compression
– Sampling used to pick sort order
– Columns distributed across multiple disks

• Also “external” tables
– JSON, CSV & Avro formats
– Google Drive and Cloud Storage

www.cwi.nl/~boncz/badsCloud Data Systems

Query Execution
SQL queries compiled into a tree of DremelX operators

AggAgg Agg Agg

SHUFFLE

JoinJoin Join Join

SHUFFLE

FilterFilter Filter Filter

MASTER

Collosus DFS

Called “shards”

Buffers rows in
dedicated “memory”
nodes

Executed by a “slot”

Highly skewed joins??
All operators are
“purely in memory”

Max of 2000 slots/query

www.cwi.nl/~boncz/badsCloud Data Systems

CPU Resource Allocation
• Compute resources not dedicated!

– Shared among other internal and external customers
– No apparent way to control computational resources used for a query

• # of shards/slots assigned to an operator function of:
– Estimated amount of data to be processed
– Cluster capacity and current load

www.cwi.nl/~boncz/badsCloud Data Systems

BigQuery Pricing
• Storage: $0.02/GB/month

(AWS is about $0.023/GB/month)

• Query options
1) Pay-as-you-go: $5/TB “processed”

- calculated after column is uncompressed
(AWS is about $1.60/TB using M4.4Xlarge EC2 instance)
2) Flat rate: $40,000/month for 2,000 dedicated slots

www.cwi.nl/~boncz/badsCloud Data Systems

Outline

• Part 1: Intro
• Part 2: Analytic Databases in the Cloud

– Snowflake
– Amazon Redshift
– Google BigQuery
– Databricks

• Part 3: Transactional Databases in the Cloud
– Amazon RDS è Aurora

www.cwi.nl/~boncz/badsCloud Data Systems

Databricks
• Spark-as-a-service in the cloud (“from the makers of”)

– All data stored in S3, in open formats

• Clusters run in the user account
– Data in the user account
– Control plane runs in Databricks account

• User can dynamically power up and down clusters
– Clusters can be grown and shrunk

MLflow: environment for reproducible ML experiments

www.cwi.nl/~boncz/badsCloud Data Systems

Delta Lake (“Lakehouse”)
• Delta Tables: Transactional Cloud Table Storage

– All data stored in Parquet, ACID properties for updates

• Delta Lake caches Parquet pages
– caching on fast local disks

• AWS: local NVMe 500MB/s per core (S3 cloud storage 150MB/s)
• Azure: bigger perf difference between local and cloud storage

– Spark scheduler schedules jobs with affinity
• node that likely caches data becomes executor of queries on it

• Delta Engine new execution engine (for SQL queries only)

– Replaces previous JIT Java compilation “Tungsten” engine
– C++ & Vectorized: faster & lower-latency

www.cwi.nl/~boncz/badsCloud Data Systems

Pay For What You Use
• Snowflake

– Charged separately for S3 storage and EC2 usage
– Data resides in Snowflake account
– works across AWS, Azure, and Google cloud

• Redshift
– More storage required buying more compute
– Is gradually becoming more Snowflake-like

• BigQuery
– Charged separately for GFS storage and TBs “processed”

• Databricks
– Charged separately for S3 storage and EC2 usage (user account)
– plus DBUs to Databricks (~EC2 usage)
– works across AWS, Azure, and Google cloud

www.cwi.nl/~boncz/badsCloud Data Systems

Elasticity of the various systems
• Snowflake

– Query-level control through Virtual Warehouse mechanism

• Redshift
– Co-located storage and compute constrains elasticity

• BigQuery (…AWS Athena is similar)
– Serverless: Google decides for you

• Databricks
– DB-level adjustment (cluster size) – dynamically changeable

www.cwi.nl/~boncz/badsCloud Data Systems

Outline

• Part 1: Intro
• Part 2: Analytic Databases in the Cloud

– Snowflake
– Amazon Redshift
– Google BigQuery
– Databricks

• Part 3: Transactional Databases in the Cloud
– Amazon RDS è Aurora

www.cwi.nl/~boncz/badsCloud Data Systems

Amazon RDS Engines

• RDS = Relational Database Service
– EC2 instance runs DBMS; SSD or EBS storage; S3 for backup

• Scalability?
– standard sharding, master/worker log replication

on-premise DBMS
(monolithic architecture)

www.cwi.nl/~boncz/badsCloud Data Systems

Traditional Ways To Scale a DBMS

each of these approach is limited by the traditional monolithic architecture

www.cwi.nl/~boncz/badsCloud Data Systems

Amazon Aurora Architecture

Microsoft now applying this architecture for SQLserver (project Socrates)

www.cwi.nl/~boncz/badsCloud Data Systems

Cloud-scalable PostgreSQL. (&MySQL)

www.cwi.nl/~boncz/badsCloud Data Systems

Scalable, Distributed, Log-Structured Storage

www.cwi.nl/~boncz/badsCloud Data Systems

Aurora Instant Crash Recovery

www.cwi.nl/~boncz/badsCloud Data Systems

Amazon RDS: Write I/O Traffic

www.cwi.nl/~boncz/badsCloud Data Systems

Aurora Database Node: Write I/O Traffic

www.cwi.nl/~boncz/badsCloud Data Systems

Aurora Storage Node: Write I/O Traffic

www.cwi.nl/~boncz/badsCloud Data Systems

IO Traffic in Aurora Replicas

www.cwi.nl/~boncz/badsCloud Data Systems

Aurora Serverless

www.cwi.nl/~boncz/badsCloud Data Systems

• Database systems have departed to the cloud
– No CapEx/low OpEx, Agility, Elasticity, Cost

• Some Analytical Cloud Systems:
– Redshift: evolved from Parallel DBMS
– Snowflake: cloud native (virtual warehouses sharing)
– Databricks: Spark è SQL + MLFlow
– serverless: BigQuery and Athena

• all: Vectorized or JIT, Columnar Compressed

• Transactional Cloud Systems: Aurora architecture:
– fleet of multi-master database nodes è only write log
– fleet of storage nodes that continuously replay logs (recovery) and

create fresh data bocks

Summary

